680 research outputs found

    Precautionary Demand for Foreign Assets in Sudden Stop Economies: An Assessment of the New Merchantilism

    Get PDF
    Financial globalization was off to a rocky start in emerging economies hit by Sudden Stops since the mid 1990s. Foreign reserves grew very rapidly during this period, and hence it is often argued that we live in the era of a New Merchantilism in which large stocks of reserves are a war-chest for defense against Sudden Stops. We conduct a quantitative assessment of this argument using a stochastic intertemporal equilibrium framework with incomplete asset markets in which precautionary saving affects foreign assets via three mechanisms: business cycle volatility, financial globalization, and Sudden Stop risk. In this framework, Sudden Stops are an equilibrium outcome produced by an endogenous credit constraint that triggers Irving Fisher's debt-deflation mechanism. Our results show that financial globalization and Sudden Stop risk are plausible explanations of the observed surge in reserves but business cycle volatility is not. In fact, business cycle volatility has declined in the post-globalization period. These results hold whether we use the formulation of intertemporal preferences of the Bewley-Aiyagari-Hugget class of precautionary savings models or the Uzawa-Epstein setup with endogenous time preference.

    Thermal Stability of Metallic Single-Walled Carbon Nanotubes: An O(N) Tight-Binding Molecular Dynamics Simulation Study

    Full text link
    Order(N) Tight-Binding Molecular Dynamics (TBMD) simulations are performed to investigate the thermal stability of (10,10) metallic Single-Walled Carbon Nanotubes (SWCNT). Periodic boundary conditions (PBC) are applied in axial direction. Velocity Verlet algorithm along with the canonical ensemble molecular dynamics (NVT) is used to simulate the tubes at the targeted temperatures. The effects of slow and rapid temperature increases on the physical characteristics, structural stability and the energetics of the tube are investigated and compared. Simulations are carried out starting from room temperature and the temperature is raised in steps of 300K. Stability of the simulated metallic SWCNT is examined at each step before it is heated to higher temperatures. First indication of structural deformation is observed at 600K. For higher heat treatments the deformations are more pronounced and the bond breaking temperature is reached around 2500K. Gradual (slow) heating and thermal equilibrium (fast heating) methods give the value of radial thermal expansion coefficient in the temperature range between 300K-600K as 0.31x10^{-5}(1/K) and 0.089x10^{-5}(1/K), respectively. After 600K, both methods give the same value of 0.089x10^{-5}(1/K). The ratio of the total energy per atom with respect to temperature is found to be 3x10^{-4} eV/K

    An Anatomy Of Credit Booms: Evidence From Macro Aggregates And Micro Data

    Get PDF
    This paper proposes a methodology for measuring credit booms and uses it to identify credit booms in emerging and industrial economies over the past four decades. In addition, we use event study methods to identify the key empirical regularities of credit booms in macroeconomic aggregates and micro-level data. Macro data show a systematic relationship between credit booms and economic expansions, rising asset prices, real appreciations, widening external deficits and managed exchange rates. Micro data show a strong association between credit booms and firm-level measures of leverage, firm values, and external financing, and bank-level indicators of banking fragility. Credit booms in industrial and emerging economies show three major differences: (1) credit booms and the macro and micro fluctuations associated with them are larger in emerging economies, particularly in the nontradables sector; (2) not all credit booms end in financial crises, but most emerging markets crises were associated with credit booms; and (3) credit booms in emerging economies are often preceded by large capital inflows but not by financial reforms or productivity gains.

    Electron orbital valves made of multiply connected armchair carbon nanotubes with mirror-reflection symmetry: tight-binding study

    Full text link
    Using the tight-binding method and the Landauer-B\"{u}ttiker conductance formalism, we demonstrate that a multiply connected armchair carbon nanotube with a mirror-reflection symmetry can sustain an electron current of the π\pi-bonding orbital while suppress that of the π\pi-antibonding orbital over a certain energy range. Accordingly, the system behaves like an electron orbital valve and may be used as a scanning tunneling microscope to probe pairing symmetry in d-wave superconductors or even orbital ordering in solids which is believed to occur in some transition-metal oxides.Comment: 4 figures, 12 page

    On the calculation of the D-optimal multisine excitation power spectrum for broadband impedance spectroscopy measurements

    Get PDF
    The successful application of impedance spectroscopy in daily practice requires accurate measurements for modeling complex physiological or electrochemical phenomena in a single frequency or several frequencies at different (or simultaneous) time instants. Nowadays, two approaches are possible for frequency domain impedance spectroscopy measurements: (1) using the classical technique of frequency sweep and (2) using (non-)periodic broadband signals, i.e. multisine excitations. Both techniques share the common problem of how to design the experimental conditions, e.g. the excitation power spectrum, in order to achieve accuracy of maximum impedance model parameters from the impedance data modeling process. The original contribution of this paper is the calculation and design of the D-optimal multisine excitation power spectrum for measuring impedance systems modeled as 2R-1C equivalent electrical circuits. The extension of the results presented for more complex impedance models is also discussed. The influence of the multisine power spectrum on the accuracy of the impedance model parameters is analyzed based on the Fisher information matrix. Furthermore, the optimal measuring frequency range is given based on the properties of the covariance matrix. Finally, simulations and experimental results are provided to validate the theoretical aspects presented.Peer ReviewedPostprint (published version

    Chemically active substitutional nitrogen impurity in carbon nanotubes

    Full text link
    We investigate the nitrogen substitutional impurity in semiconducting zigzag and metallic armchair single-wall carbon nanotubes using ab initio density functional theory. At low concentrations (less than 1 atomic %), the defect state in a semiconducting tube becomes spatially localized and develops a flat energy level in the band gap. Such a localized state makes the impurity site chemically and electronically active. We find that if two neighboring tubes have their impurities facing one another, an intertube covalent bond forms. This finding opens an intriguing possibility for tunnel junctions, as well as the functionalization of suitably doped carbon nanotubes by selectively forming chemical bonds with ligands at the impurity site. If the intertube bond density is high enough, a highly packed bundle of interlinked single-wall nanotubes can form.Comment: 4 pages, 4 figures; major changes to the tex

    Tubular structures of GaS

    Get PDF
    In this Brief Report we demonstrate, using density-functional tight-binding theory, that gallium sulfide (GaS) tubular nanostructures are stable and energetically viable. The GaS-based nanotubes have a semiconducting direct gap which grows towards the value of two-dimensional hexagonal GaS sheet and is in contrast to carbon nanotubes largely independent of chirality. We further report on the mechanical properties of the GaS-based nanotubes

    Nanoscale Processing by Adaptive Laser Pulses

    Full text link
    We theoretically demonstrate that atomically-precise ``nanoscale processing" can be reproducibly performed by adaptive laser pulses. We present the new approach on the controlled welding of crossed carbon nanotubes, giving various metastable junctions of interest. Adaptive laser pulses could be also used in preparation of other hybrid nanostructures.Comment: 4 pages, 4 Postscript figure

    Bundling up carbon nanotubes through Wigner defects

    Full text link
    We show, using ab initio total energy density functional theory, that the so-called Wigner defects, an interstitial carbon atom right besides a vacancy, which are present in irradiated graphite can also exist in bundles of carbon nanotubes. Due to the geometrical structure of a nanotube, however, this defect has a rather low formation energy, lower than the vacancy itself, suggesting that it may be one of the most important defects that are created after electron or ion irradiation. Moreover, they form a strong link between the nanotubes in bundles, increasing their shear modulus by a sizeable amount, clearly indicating its importance for the mechanical properties of nanotube bundles.Comment: 5 pages and 4 figure
    • …
    corecore